Abstract

Human age estimation from facial images has a wide range of real-world applications in human computer interaction (HCI). In this paper, we use the bio-inspired features (BIF) to analyze different facial parts: (a) eye wrinkles, (b) whole internal face (without forehead area) and (c) whole face (with forehead area) using different feature shape points. The analysis shows that eye wrinkles which cover 30% of the facial area contain the most important aging features compared to internal face and whole face. Furthermore, more extensive experiments are made on FG-NET database by increasing the number of missing pictures in older age groups using MORPH database to enhance the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.