Abstract

The ability to differentiate into mesenchymal lineages, as well as immunomodulatory, anti-inflammatory, anti-apoptotic, and angiogenic properties give ASCs great therapeutic potential. Through their culture as multicellular, three-dimensional spheroids this potential can even be enhanced. Accordingly, 3D spheroids are not only promising candidates for the application in regenerative medicine and inflammatory disease therapy, but also for the use as building blocks in tissue engineering approaches. Due to the resemblance to physiological cell-cell and cell-matrix interactions, 3D spheroids gain higher similarity to real tissues, what makes them a valuable tool in the development of bioactive constructs equivalent to native tissues in terms of its cellular and extracellular structure. Especially, to overcome the still tremendous clinical need for adequate implants to repair soft tissue defects, 3D spheroids consisting of ASCs are a promising approach in adipose tissue engineering. Nevertheless, studies on the use of ASC-based spheroids as building blocks for fat tissue reconstruction have so far been very rare. In order to optimally exploit their therapeutic potential to further their use in regenerative medicine, including adipose tissue engineering approaches, a 3D spheroid model consisting of ASCs was characterized extensively in this work. This included not only the elucidation of the structural features, but also the differentiation capacity, gene expression, and secretory properties. In addition, the elucidation of underlying mechanisms contributing to the improved therapeutic efficiency was addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.