Abstract

Cell-based therapies are used to treat bone defects. We recently described that human multipotent adipose-derived stem (hMADS) cells, which exhibit a normal karyotype, self renewal, and the maintenance of their differentiation properties, are able to differentiate into different lineages. Herein, we show that hMADS cells can differentiate into osteocyte-like cells. In the presence of a low amount of serum and EGF, hMADS cells express specific molecular markers, among which alkaline phosphatase, CBFA-1, osteocalcin, DMP1, PHEX, and podoplanin and develop functional gap-junctions. When loaded on a hardening injectable bone substitute (HIBS) biomaterial and injected subcutaneously into nude mice, hMADS cells develop mineralized woven bone 4 weeks after implantation. Thus hMADS cells represent a valuable tool for pharmacological and biological studies of osteoblast differentiation in vitro and bone development in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call