Abstract

Human perception and action adaptively change depending on everyday experiences of or exposures to sensory information in changing environments. I aimed to know how our perception-action system adapts and changes in modified virtual-reality (VR) environments, and investigated visuo-motor adaptation of position constancy in a VR environment, visual and vestibular postural control after 7-day adaptation to modified sensory stimulation, and learning of event related cortical potential during motor imagery for application to a brain-machine interface. I found that human perception system, perception-action coordination system, and underlying neural system could change to adapt a new environment with considering quantitative sensory-motor relationship, reliability of information, and required learning with real-time feedback. These findings may contribute to develop an adaptive VR system in a future, which can change adaptively and cooperatively with human perceptual adaptation and neural plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call