Abstract

Human activity recognition (HAR) has become an interesting topic in healthcare. This application is important in various domains, such as health monitoring, supporting elders, and disease diagnosis. Considering the increasing improvements in smart devices, large amounts of data are generated in our daily lives. In this work, we propose unsupervised, scaled, Dirichlet-based hidden Markov models to analyze human activities. Our motivation is that human activities have sequential patterns and hidden Markov models (HMMs) are some of the strongest statistical models used for modeling data with continuous flow. In this paper, we assume that emission probabilities in HMM follow a bounded-scaled Dirichlet distribution, which is a proper choice in modeling proportional data. To learn our model, we applied the variational inference approach. We used a publicly available dataset to evaluate the performance of our proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.