Abstract

This work deals with the task of human daily activity recognition using miniature inertial sensors. The proposed method reduces sensitivity to the position and orientation of the sensor on the body, which is inherent in traditional methods, by transforming the observed signals to a “virtual” sensor orientation. By means of this computationally low-cost transform, the inputs to the classification algorithm are made invariant to sensor orientation, despite the signals being recorded from arbitrary sensor placements. Classification results show that improved performance, in terms of both precision and recall, is achieved with the transformed signals, relative to classification using raw sensor signals, and the algorithm performs competitively compared to the state-of-the-art. Activity recognition using data from a sensor with completely unknown orientation is shown to perform very well over a long term recording in a real-life setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call