Abstract

Human activity recognition (HAR) performs a vital function in various fields, including healthcare, rehabilitation, elder care, and monitoring. Researchers are using mobile sensor data (i.e., accelerometer, gyroscope) by adapting various machine learning (ML) or deep learning (DL) networks. The advent of DL has enabled automatic high-level feature extraction, which has been effectively leveraged to optimize the performance of HAR systems. In addition, the application of deep-learning techniques has demonstrated success in sensor-based HAR across diverse domains. In this study, a novel methodology for HAR was introduced, which utilizes convolutional neural networks (CNNs). The proposed approach combines features from multiple convolutional stages to generate a more comprehensive feature representation, and an attention mechanism was incorporated to extract more refined features, further enhancing the accuracy of the model. The novelty of this study lies in the integration of feature combinations from multiple stages as well as in proposing a generalized model structure with CBAM modules. This leads to a more informative and effective feature extraction technique by feeding the model with more information in every block operation. This research used spectrograms of the raw signals instead of extracting hand-crafted features through intricate signal processing techniques. The developed model has been assessed on three datasets, including KU-HAR, UCI-HAR, and WISDM datasets. The experimental findings showed that the classification accuracies of the suggested technique on the KU-HAR, UCI-HAR, and WISDM datasets were 96.86%, 93.48%, and 93.89%, respectively. The other evaluation criteria also demonstrate that the proposed methodology is comprehensive and competent compared to previous works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.