Abstract

To understand the human activities and anticipate his intentions Human Activity Recognition(HAR) research is rapidly developing in tandem with the widespread availability of sensors. Various applications like elderly care and health monitoring systems in smart homes use smartphones and wearable devices. This paper proposes an effective HAR framework that uses deep learning methodology like Convolution Neural Networks(CNN), variations of LSTM(Long Short term Memory) and Gated Recurrent Units(GRU) Networks to recognize the activities based on smartphone sensors. The hybrid use of CNN-LSTM eliminates the handcrafted feature engineering and uses spatial and temporal data deep. The experiments are carried on UCI HAR and WISDM data sets, and the comparison results are obtained. The result shows a better 96.83 % and 98.00% for the UCI-HAR and WISDM datasets, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.