Abstract

Predation risk is one of the largest costs associated with foraging in small mammals. Small mammals select microhabitat features such as tree and shrub canopy cover, woody debris and vegetative ground cover that can lower the risk of detection from predators and provide greater protection if discovered. Small mammals also increase foraging activity and decrease selection for cover when cloud cover increases and moon illumination is less. Often researchers assume small mammals in urban areas respond to these cues in the same manner as in natural areas, but these cues themselves are altered in urban zones. In this study, we investigated how Amur honeysuckle (Lonicera maackii) and coarse woody debris (CWD) affected giving-up density (GUD) in white-footed mice (Peromyscus leucopus). Each of three habitat treatments (open flood channel, the edge and interior of the honeysuckle patch) contained cover treatments with coarse woody debris present or absent. The six treatment combinations were compared to environmental variables (temperature, humidity and illumination) and habitat variables to test their effect on GUD. Peromyscus leucopus foraged to lower densities in areas with CWD present and also under the honeysuckle canopy, using this invasive shrub to decrease predation risk, potentially increasing survivability within this urban park. Increased human presence negatively affected foraging behavior across treatments. Human presence and light pollution significantly influenced P. leucopus, modifying their foraging behavior and demonstrating that both fine- and coarse-scale urban factors can affect small mammals. Foraging increased as humidity increased, particularly under the honeysuckle canopy. Changes in illumination due to moonlight and cloud cover did not affect foraging behavior, suggesting urban light pollution may have altered behavioral responses to changes in light levels. Lonicera maackii seemed to facilitate foraging in P. leucopus, even though it adversely affects the plant community, suggesting that its impact may not be entirely negative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.