Abstract
This paper introduces a novel recognition framework for human actions using hybrid features. The hybrid features consist of spatio-temporal and local static features extracted using motion-selectivity attribute of 3D dual-tree complex wavelet transform (3D DT-CWT) and affine SIFT local image detector, respectively. The proposed model offers two core advantages: (1) the framework is significantly faster than traditional approaches due to volumetric processing of images as a ‘3D box of data’ instead of a frame by frame analysis, (2) rich representation of human actions in terms of reduction in artifacts in view of the promising properties of our recently designed full symmetry complex filter banks with better directionality and shift-invariance properties. No assumptions about scene background, location, objects of interest, or point of view information are made whereas bidirectional two-dimensional PCA (2D-PCA) is employed for dimensionality reduction which offers enhanced capabilities to preserve structure and correlation amongst neighborhood pixels of a video frame.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.