Abstract

Based on human bone joints, skeleton information has clear and simple features and is not easily affected by appearance factors. In this paper, an improved feature of Gist, ExGist, is proposed to describe the skeleton information of human bone joints for human action recognition. The joint coordinates are extracted by using OpenPose and the thermodynamic diagram, and ExGist is used for feature extraction. The advantage of ExGist is that it can effectively characterize the local and global features of skeleton information while maintaining the original advantages of Gist feature. Compared with Gist, ExGist achieves better results on different classifiers. Additionally, compared with C3D and APTNet, our model also obtains better results with an accuracy rate of 89.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.