Abstract

A novel human action recognition algorithm based on key posture is proposed in this paper. In the method, the mesh features of each image in human action sequences are firstly calculated; then the key postures of the human mesh features are generated through k-medoids clustering algorithm; and the motion sequences are thus represented as vectors of key postures. The component of the vector is the occurrence number of the corresponding posture included in the action. For human action recognition, the observed action is firstly changed into key posture vector; then the correlevant coefficients to the training samples are calculated and the action which best matches the observed sequence is chosen as the final category. The experiments on Weizmann dataset demonstrate that our method is effective for human action recognition. The average recognition accuracy can exceed 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.