Abstract

The collection of participant data ‘in the wild’ is widely employed by Human-Computer Interaction researchers. A variety of methods, including experience sampling, mobile crowdsourcing, and citizen science, rely on repeated participant contributions for data collection. Given this strong reliance on participant data, ensuring that the data is complete, reliable, timely, and accurate is key. Although previous work has made significant progress on ensuring that a sufficient amount of data is collected, the accuracy of human contributions has remained underexposed. In this article we argue for an emerging need for an increased focus on this aspect of human-labelled data. The articles published in this special issue demonstrate how a focus on the accuracy of the collected data has implications on all aspects of a study – ranging from study design to the analysis and reporting of results. We put forward a five-point research agenda in which we outline future opportunities in assessing and improving human accuracy in mobile data collection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.