Abstract

The cloning and expression of genes encoding for the human neuronal nicotinic acetylcholine receptors (nAChRs) has opened new possibilities for investigating their physiological and pharmacological properties. Cells (HEK 293) stably transfected with two of the major brain subunits, alpha4 and beta2, were characterized electrophysiologically using the patch-clamp technique. Fast application of the natural ligand ACh can evoke currents up to 3500 pA, with an apparent affinity (EC50) of 3 microM and a Hill coefficient of 1.2. The rank order of potency of four nAChR ligands to activate human alpha4beta2 receptors is (-)-nicotine > ACh > (-)-cytisine > ABT-418. At saturating concentrations, the efficacy of these ligands is ABT-418 >> (-)-nicotine > ACh >> (-)-cytisine > GTS-21 (previously named DMXB). Coapplication of 1 microM ACh with known nAChR inhibitors such as dihydro-beta-erythroidine and methyllycaconitine reversibly reduces the current evoked by the agonist with respective IC50 values of 80 nM and 1.5 microM. The current-voltage relationship of human alpha4beta2 displays a strong rectification at positive potentials. Experiments of ionic substitutions suggest that human alpha4beta2 nAChRs are permeable to sodium and potassium ions. In the "outside-out" configuration, ACh evokes unitary currents (main conductance 46 pS) characterized by a very fast rundown. Potentiation of the ACh-evoked currents is observed when the extracellular calcium concentration is increased from 0.2 to 2 mM. In contrast, however, a reduction of the evoked currents is observed when calcium concentration is elevated above 2 mM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.