Abstract

Defensins form a major family of antimicrobial peptides. Recently, human β-defensin 2 and fungal plectasin were shown to be immune-related potassium voltage-gated channel subfamily A member 3 (Kv1.3) channel inhibitors. This work continued to show that the human α-defensins human neutrophil peptide (HNP) 1 and human defensin (HD) 5 are selective Kv1.3 channel inhibitors with 50% inhibition concentration values of 102.0 ± 30.3 nM and 2.2 ± 0.2 μM, respectively. Furthermore, HNP1 was found to inhibit Kv1.3 currents and IL-2 secretion in human CD3(+) T cells. Despite the structural similarity between HNP1 and HD5, HNP1 could simultaneously bind to the S1-S2 linker and the pore region of the Kv1.3 channel as both a toxinlike blocker and a novel modifier, whereas HD5 could only bind to the channel pore region as a toxinlike blocker. As a channel modifier, HNP1 could shift the conductance-voltage relationship curve of the Kv1.3 channel by ∼9.5 mV in the positive direction and could increase the time constant for channel activation through the electrostatic repulsion between the cationic HNP1 anchored in the S1-S2 linker and the positively charged S4 domain of the Kv1.3 channel. Together, these findings reveal that human α-defensins are novel endogenous inhibitors of Kv1.3 channels with distinct interaction mechanisms, which facilitates future research into their adaptive immune functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.