Abstract

Rainfall-induced slope failure is one of the most destructive natural disasters that occur frequently in natural or engineered residual soil slopes. Rainfall-induced slope failures often occur as a shallow slope failure, with slip surfaces orientated parallel to the slope surface, especially in Hulu Kelang areas where a residual soil profile has formed over a bedrock interface. The possibility of using the transient rainfall infiltration and grid-based regional slope stability analysis method (TRIGRS) is applied to unstable slopes and three rainfall threshold chart conditions that result in landslides in the study area. We compare the intensity–duration of 3-day rainfall threshold charts (I–D)3, cumulative 30-day rainfall–number of rainy day (API30–N), and cumulative 3-day rainfall–30-day antecedent precipitation index threshold chart (E 3–API30) conditions capable of producing slope instability in the study area predicted by TRIGRS, with empirical rainfall I–D thresholds for possible landslide occurrence in the northeast part of Kuala Lumpur. The results showed that TRIGRS is capable of reproducing the frequency of the size of the patches of terrain predicted as unstable by the model, which match the frequency size statistics of landslides in the study area, and the rainfall threshold based on the E 3–API30 threshold chart could give a better prediction to a landslide than other conditions in Hulu Kelang area. Our results are a step towards understanding the mechanisms that give rise to landslide regional modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.