Abstract

Shape optimization is a growing field of interest in many areas of academic research, marine design, and manufacturing. As part of the Computational Research and Engineering Acquisition Tools and Environments Ships Hydromechanics Product, an effort is underway to develop a computational tool set and process framework that can aid the ship designer in making informed decisions regarding the influence of the planned hull shape on its hydrodynamic characteristics, even at the earliest stages where decisions can have significant cost implications. The major goal of this effort is to utilize the increasing experience gained in using these methods to assess shape optimization techniques and how they might impact design for current and future naval ships. Additionally, this effort is aimed at establishing an optimization framework within the bounds of a collaborative design environment that will result in improved performance and better understanding of preliminary ship designs at an early stage. The initial effort demonstrated here is aimed at ship resistance, and examples are shown for full ship and localized bow dome shaping related to the Joint High Speed Sealift hull concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.