Abstract
Repetitive-pulsed (RP) laser propulsion is expected to replace chemical propulsion systems because it can reduce launch costs. A laser-supported detonation wave (LSD) plays an important role in the thrust-generation process of RP laser propulsion. The LSD propagation mechanism has been studied. Nevertheless, the LSD propagation velocity measured in an earlier study was lower than the Chapman–Jouguet (CJ) velocity, which meant that Hugoniot analysis produced no solution. The findings suggest that the radial flow from the central axis of LSD exerts some effects, but it has not been evaluated quantitatively. Two-dimensional axisymmetric computational fluid dynamics (CFD) analysis using the measured propagation velocity was performed for this study to evaluate effects of the radial flow of a bow-shaped LSD. Results show that the ratios of the radial flow of mass, momentum, and enthalpy from the central axis can be calculated, respectively, as 0.82, 0.13, and 0.17. Additionally, the measured propagation velocity of a bow-shaped LSD was shown to be higher than the CJ velocity calculated using the two-dimensional axisymmetric CFD reproducing the experiment conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.