Abstract

Parkinson's disease (PD) is a degenerative disorder of the nervous system characterized by the loss of dopaminergic neurons and damage of neurons in the substantia nigra (SN) and striatum, resulting in impaired motor functions. This study aims to investigate how extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HucMSC) regulate Special AT-rich sequence-binding protein-1 (SATB 1) and influence Wnt/β-catenin pathway and autophagy in PD model. The PD model was induced by damaging SH-SY5Y cells and mice using 6-OHDA. According to the study, administering EVs every other day for 14 days improved the motor behavior of 6-OHDA-induced PD mice and reduced neuronal damage, including dopaminergic neurons. Treatment with EVs for 12 hours increased the viability of 6-OHDA-induced SH-SY5Y cells. The upregulation of SATB 1 expression with EV treatment resulted in the activation of the Wnt/β-catenin pathway in PD model and led to overexpression of β-catenin. Meanwhile, the expression of LC3 II was decreased, indicating alterations in autophagy. In conclusion, EVs could mitigate neuronal damage in the 6-OHDA-induced PD model by upregulating SATB 1 and activating Wnt/β-catenin pathway while also regulating autophagy. Further studies on the potential therapeutic applications of EVs for PD could offer new insights and strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.