Abstract

Liver regeneration after partial hepatectomy (PH) is a complex and well-orchestrated process involving multiple factors such as cytokines, growth factors, and signaling pathways. MicroRNAs (miRNAs) participate in various biological processes including liver regeneration after PH. In the current study, we investigated the expression and function of human umbilical cord blood mesenchymal stem cell (hUCB-MSC) derived exosomal miRNAs on liver regeneration using a rat PH model. We found that hUCB-MSC derived exosomes promoted rat liver regeneration and ameliorated liver injury after PH. MicroRNA microarray was performed to identify the differentially expressed miRNAs in hUCB-MSC derived exosomes involving in liver regeneration after PH. We demonstrated that hUCB-MSC derived exosomal miR-124 could promote liver regeneration and prevent against liver injury after PH in rats. Inhibition of miR-124 abrogated the protective role of hUCB-MSC derived exosome in rat liver regeneration after PH. In addition, we identified that transcription factor Foxg1 was a direct target of miR-124 and miR-124 promoted rat liver cell proliferation via suppressing Foxg1 expression. Furthermore, we demonstrated that hUCB-MSC derived exosomal miR-124 enhanced liver regeneration via inhibiting Foxg1 in rats after PH. In summary, our findings suggest that hUCB-MSC-derived exosomal miR-124 could promote rat liver regeneration after PH via downregulating Foxg1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call