Abstract
Using the FitzHugh-Nagumo equations to represent the oscillatory electrical behavior of β-cells, we develop a coupled oscillator network model with cubic lattice topology, showing that the emergence of pacemakers or hubs in the system can be viewed as a natural consequence of oscillator population diversity. The optimal hub to nonhub ratio is determined by the position of the diversity-induced resonance maximum for a given set of FitzHugh-Nagumo equation parameters and is predicted by the model to be in a range that is fully consistent with experimental observations. The model also suggests that hubs in a β-cell network should have the ability to "switch on" and "off" their pacemaker function. As a consequence, their relative amount in the population can vary in order to ensure an optimal oscillatory performance of the network in response to environmental changes, such as variations of an external stimulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.