Abstract

We present observations of the bipolar nebula OH 231.8+4.2, made with the Hubble Space Telescope (HST) NICMOS camera, in three wide filter bands (F205W, F160W, and F110W). The images have excellent dynamic range after removal of low-level instrumental artifacts. In the F205W filter (λ ≈ 2.04 μm), we achieve a peak/rms of greater than 8000 with an angular resolution of 020 (FWHM). The combination of high dynamic range and angular resolution confirms previous observations but also reveals new features in the near-IR morphology of the nebula, which at these wavelengths is dominated by scattered light. The northern (approaching) lobe shows well-defined, limb-brightened edges. The central jet splits into two filaments and exhibits some curvature between the center of the nebula and the end of the northern lobe. The southern (receding) lobe has a diffuse, flocculent appearance without a sharply defined central jet, in contrast to the northern lobe. A sharpened version of the F205W image shows indications of turbulent structures both in the northern lobe and jet and in the southern lobe. A faint cylindrical halo of scattered light shows a sharp increase in surface brightness inside a radius of ~4'' from the center, possibly resulting from a transition from a spherical wind to a disk- or torus-like mass ejection, on the same timescale as the formation of the collimated fast wind seen in CO and HCO+ images. We calculate the extinction through the nebula from the measured near-IR colors and a silicate grain model. For a simple geometric model of a dense central disk, we estimate a disk mass (gas and dust) in the range 0.03-0.06 M☉, relatively insensitive to grain size. The circumstance of an asymptotic giant branch (AGB) star with a massive, highly collimated, high-velocity bipolar flow may be understood in terms of the model of Soker & Rappaport if the central star underwent a change in mass-loss properties from a (roughly) spherical AGB wind to equatorially enhanced mass loss beginning ~ × 103 yr ago. Supposing the presence of a dwarf companion in a suitable orbit, the bipolar nebula then is a consequence of a strong increase in mass loss as the central star evolves close to the tip of the AGB and will soon evolve to higher Teff and appear as a more typical proto-planetary nebula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.