Abstract

We examine the structural properties of three super-star clusters in the nearby, H I-rich galaxies NGC 1569 and NGC 1705. The clusters, which have total absolute V magnitudes between - 13.3 and - 14.1, appear to be point sources on ground-based images but are partially resolved in new images obtained with the Hubble Space Telescope (HST) Planetary Camera. From deconvolved V- and I-band images we find that the three clusters have very compact cores with extended halos that are partially resolved into individual stars. Using new distances to the galaxies derived from color-magnitude diagrams for field stars, we find that the half-light radii are 2.2-3.4 pc. The cluster in NGC 1705 is barely resolved in the HST images. The clusters in NGC 1569, on the other hand, show significant substructure in their cores and ellipticities that are comparable to the flattenings seen in young clusters in the Large Magellanic Cloud (LMC). The clusters show internal (V - I) color gradients. The properties of these clusters are similar to R136, the core of the luminous star-forming complex 30 Doradus in the LMC, except that R136 has a lower luminosity and central surface brightness. The half-light surface brightness of the brightest cluster (NGC 1569 A) is 1.3 x 10^6^ L_v,sun_ pc^-2^, which is over 65 times higher than R136 and 1200 times higher than the mean rich LMC star cluster other than R136 after allowing for aging effects. The next brightest clusters in each of these galaxies are >= 2 mag fainter. Thus, the super-star clusters represent an extreme but uncommon mode of star formation. In terms of luminosity and size, they appear to be good analogs of young globular clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.