Abstract

Experimental near-wake flow field measurements from two Penn State University water tunnel tests of a defeatured helicopter hub are compared with two unsteady computational fluid dynamics (CFD) analyses: CREATETM-AV Helios and the University of Maryland Mercury. Both CFD frameworks employ an unstructured/Cartesian multimesh paradigm and turbulent Spalart–Allmaras detached eddy simulation (SA-DES) modeling. Experimental velocimetry measurements of mean wake velocities, harmonic content, and Reynolds stresses provide valuable validation data for CFD. Overall, the two CFD solvers were in good agreement with each other and qualitatively captured the mean and harmonic content of the wake structures with accuracy. Flow feature dissimilarities between the advancing and retreating sides were differentiated and indicated dominant regions of harmonic flow disturbances biased towards the retreating side, in good agreement with experimental observations. Quantitatively, some variation in velocity deficits and downwash were noted, either in profile character, magnitude, and/or location. Encouragingly, there was little tendency of excessive dissipation in the CFD near wake, and the harmonic content actually tended towards a common overprediction. Reynolds number effects were minimal, and grid density effects were studied but inconclusive. These efforts were part of the Third PSU Rotor Hub Flow Workshop in 2020.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.