Abstract

To evaluate the clinical efficacy of Huangqi Sijunzi decoction (HQSJZD) for treating cancer-related fatigue (CRF) of spleen and stomach Qi deficiency type after chemotherapy in patients with breast cancer. A total of 94 breast cancer patients who developed CRF of spleen and stomach Qi deficiency type after chemotherapy were randomized into chemotherapy group (n=47) and traditional Chinese medicine (TCM) + chemotherapy group (n=47). The patients in chemotherapy group received the AC or EC regimen and non-drug interventions including psychological counseling, and those in TCM + chemotherapy group received oral administration of HQSJZD in addition to chemotherapy for 21 days as a treatment cycle, after which improvement of fatigue was assessed using Modified Piper Fatigue Scale. The active ingredients and targets of HQSJZD were screened using the TCM System Pharmacology Analysis Platform (TCMSP); the CRF- and breast cancer-related disease targets were retrieved based on data from the GeneCards, NCBI gene and OMIM databases to construct the component-target network and the protein-protein interaction (PPI) network. GO functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes KEGG pathway enrichment analysis of the target genes were performed to construct the component-disease-pathway-target biological network. The binding strength of the major drug ingredients and CRF key targets were predicted using AutoDock software. The scores for somatic fatigue, emotional fatigue and cognitive fatigue, along with the overall fatigue score, showed more significant improvements in TCM+chemotherapy group than in chemotherapy group (P < 0.001), and the response rate reached 89.4% in the combined treatment group. We identified 250 targets for HQSJZD, 2653 CRF-related genes, 15 329 breast cancer-related genes and 161 prescription-disease intersected targets, from which topological analysis identified 66 potential key targets. GO and KEGG enrichment analyses predicted multiple pathways related with the disease. Molecular docking results suggested that the core ingredients of HQSJZD showed high affinities to the key targets AKT1, CASP3, IL6, JUN and VEGFA, among which AKT1 might be the most important target for HQSJZD to treat CRF. HQSJZD can obviously improve CRF symptoms in breast cancer patients possibly by regulating multiple signaling pathways including PI3K-Akt through AKT1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.