Abstract

Hepatotoxicity caused by the anticancer medication oxaliplatin (OXA) significantly restricts its clinical use and raises the risk of liver damage. Huaier, a fungus found in China, has been demonstrated to have various beneficial effects in adjuvant therapy for cancer. However, the preventive impact of Huaier against OXA-induced hepatotoxicity is still unknown. The potential molecular pathways behind the hepatoprotective activity of Huaier against OXA-induced hepatotoxicity were investigated in the current study Mice were intraperitoneally injected with 10 mg/kg of OXA once a week for six consecutive weeks to establish a liver injury model. Huaier (2 g/kg, 4 g/kg, and 8 g/kg) was administered weekly to mice by gavage for six weeks. Commercial kits were used to determine the contents of glutathione, catalase, superoxide dismutase, and malondialdehyde. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the impact of Huaier therapy on the expression of the PI3K pathway. Huaier exhibited a good protective effect on OXA-induced hepatotoxicity in a dose-dependent manner, which was connected to the suppression of oxidative stress, according to the results of biochemical index detection and histological staining analysis. In addition, Huaier could counteract the OXA-induced suppression of the PI3K/AKT signaling pathway. Moreover, the hepatoprotective effect and PI3K activation of Huaier were eradicated by LY294002. These findings imply that by decreasing oxidative stress, Huaier can minimize OXA-induced liver injury, establishing the groundwork for Huaier to lessen chemotherapy-induced hepatotoxicity in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.