Abstract

We have developed a high-temperature superconducting (HTS) dual-band bandpass filter (BPF) using stub-loaded hair-pin resonators with independently controllable bandwidths. The proposed dual-band BPF is composed of five stub-loaded hair-pin resonators with H-shaped waveguides placed at the center in the spaces between them. The resonator enables independent control of the first and second band resonant frequencies. The main advantage of the proposed filter was to enable independent control of the bandwidths of the first and second band. The coupling coefficient of the second one was controlled by the distance between the resonators, which did not affect the coupling coefficient of the first one. On the other hand, the coupling coefficient of the first one was controlled by the H-shaped waveguide, which did not affect the coupling coefficient of the secondone. An electromagnetic simulator was used to design and analyze the filter. The filter was designed at 3.5GHz with a 70-MHz (2%) bandwidth for the first band and at 5.0GHz with a 250-MHz (5%) bandwidth for the second band. The filter was fabricated using YBa2Cu3Oy thin film on a CeO2-bufferd Al2O3 substrate. The measured results agree well with the simulated ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call