Abstract
IntroductionThe placenta is a transitory organ essential for proper fetal maturation and growth. Trophoblasts, the main cell type of the placenta, differentiate along the villous or extravillous pathways. The ability of villous cytotrophoblasts to undergo an epithelial-to-mesenchymal transition to form the invasive extravillous trophoblasts is vital for a successful pregnancy outcome. Many trophoblastic cell lines, including HTR-8/SVneo, have been widely used to investigate extravillous trophoblast biology and functions. We have previously reported that HTR-8/SVneo cell line contains a mixed populations of epithelial and mesenchymal cells. Uncovering the mechanisms underlying this heterogeneity is essential for the proper study of normal and pathological placental function. MethodsHTR-8/SVneo was subjected to monoclonal isolation, spheroid formation assay and cell sorting to isolate pure epithelial and mesenchymal populations. These fractions were maintained in culture and assessed for expression of epithelial and mesenchymal markers using quantitative real-time PCR and immunofluorescence. In addition, the implication of TGFβ in the EMT process was investigated using a selective inhibitor of TGF-βR1 (A83-01). ResultsPassaging of the pure epithelial population maintained under normal culture condition resulted in a shift to a mesenchymal phenotype. This transition was reduced upon inhibiting TGF-βR1. Similarly, E-cadherin positive HTR-8/SVneo spheroids plated in 2D culture resulted in the emergence of streams of invading mesenchymal cells. DiscussionHTR-8/SVneo cell line is undergoing EMT under normal culture condition and TGFβ is a key mediator of this process. Our results raise the possibility of using HTR-8/SVneo cell line as a model to investigate EMT in extravillous trophoblast cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.