Abstract

Infection with human T cell leukemia virus type 1 (HTLV-1) can result in the development of HAM/TSP, a nonfatal, chronic inflammatory disease involving neuronal degeneration and demyelination of the central nervous system. Elevated levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and IL-1 observed in the cerebrospinal fluid of HAM-TSP patients suggest that cytokine dysregulation within the CNS is involved in neuropathogenesis. HTLV-1 infection and enhanced expression of TNF-alpha by microglial cells, astrocytes, and macrophages has been hypothesized to lead to the destruction of myelin and oligodendrocytes in the CNS. Although the association of HTLV-2 infection and development of neurological disease is more tenuous, HTLV-2 has also been found to be associated with peripheral neuropathies. To investigate the roles of HTLV Tax(1) and Tax(2) in the induction of cytokine disregulation in these cell types, we are currently developing gene delivery vectors based on human immunodeficiency virus type-1 (HIV-1) capable of stably coexpressing the HTLV-1 or -2 tax and eGFP reporter genes in primary human cells. Transduction frequencies of up to 50%, as assessed by eGFP expression, can be achieved in human monocyte-derived macrophages and in explanted cultures of human microglia. Preliminary data suggest that Tax(1) expression is sufficient to up-regulate the proinflammatory cytokine profile in explanted human microglial cells. Future experiments will compare and evaluate the effect of tax(1) and tax(2) gene expression on the cellular proinflammatory cytokine expression profile, as well as demonstrate the effects of transducing human fetal astrocytes and PBMC-derived macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.