Abstract

Alzheimer’s disease (AD) is a degenerative condition of the brain that affects the memory and reasoning abilities of patients. Memory is steadily wiped out by this condition, which gradually affects the brain’s ability to think, recall, and form intentions. In order to properly identify this disease, a variety of manual imaging modalities including CT, MRI, PET, etc. are being used. These methods, however, are time-consuming and troublesome in the context of early diagnostics. This is why deep learning models have been devised that are less time-intensive, require less high-tech hardware or human interaction, continue to improve in performance, and are useful for the prediction of AD, which can also be verified by experimental results obtained by doctors in medical institutions or health care facilities. In this paper, we propose a hybrid-based AI-based model that includes the combination of both transfer learning (TL) and permutation-based machine learning (ML) voting classifier in terms of two basic phases. In the first phase of implementation, it comprises two TL-based models: namely, DenseNet-121 and Densenet-201 for features extraction, whereas in the second phase of implementation, it carries out three different ML classifiers like SVM, Naïve base and XGBoost for classification purposes. The final classifier outcomes are evaluated by means of permutations of the voting mechanism. The proposed model achieved accuracy of 91.75%, specificity of 96.5%, and an F1-score of 90.25. The dataset used for training was obtained from Kaggle and contains 6200 photos, including 896 images classified as mildly demented, 64 images classified as moderately demented, 3200 images classified as non-demented, and 1966 images classified as extremely mildly demented. The results show that the suggested model outperforms current state-of-the-art models. These models could be used to generate therapeutically viable methods for detecting AD in MRI images based on these results for clinical prospective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.