Abstract

Small cell lung cancer (SCLC) has been a devastating actuality in clinic and the molecular mechanisms underlying this disease remain unclear. The epigenetic alterations located in the promoter region of human telomerase reverse transcriptase (hTERT) have been demonstrated as one of the most prevalent non-coding genomic modifications in multiple cancers. However, alteration of hTERT promoter methylation in SCLC and the subsequently induced change in tumor cell behavior remains unclear. In this research, we hypothesized that abnormal methylation of hTERT promotor enhanced the progression of SCLC and the outcome of radiotherapy resistance. Quantitative real-time PCR and western blot assays were performed to evaluate the RNA and protein levels of hTERT and enhancer of zeste homolog 2 (EZH2), respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to estimate the viability and X-ray sensitivity of H20 and H446 cell lines. Functionally, upregulation of hTERT promoted the proliferation and migration of H20 and H446 cells, and the high-level of methylation in the promoter region of hTERT induced by radiation caused radio-resistance in SCLC. Mechanically, methylation of hTERT promoter enhanced the progression and radio-resistance of SCLC through upregulating the expression of its downstream effector EZH2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.