Abstract
The proton transport can be enhanced by properly controlling the chemical structure of side chains. In this work, polyelectrolytes supported on poly (arylene ether ketone), decorated with four kinds of nitrogen-heterocycles, were prepared as alternative materials for high-temperature proton exchange membrane (HT-PEM) applications. Particularly, the “prominent basic” alongside backbone makes positive imidazole group more effective than other three to promote phosphoric acid doping, enhance proton conductivity and avoid phosphoric acid leakage. The obtained BrPAEK-MeIm1.6 membranes (1.6 imidazole/unit), with PA doping level of 19.2 in 1 h acid absorption process, exhibited the conductivity of 0.091 S cm−1 at 170 °C. Under harsh experimental conditions, membrane with higher imidazole exhibited relatively higher phosphoric acid retention ability (27% enhancement). The stability of proton conductivity has also been demonstrated, which indicates that the PA/BrPAEK-MeIm1.6 come to an equilibrium state with 77.7% of initial conductivity after 5 h. Then, there is almost negligible conductivity loss within 30 h. These results provide a basic understanding of nitrogen-heterocyclic addition and PA absorption and open up avenues for further research in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.