Abstract

We present the results of new spectral diagnostic investigations applied to high-resolution long-slit spectra of the RW Aur bipolar jet obtained with HST/STIS. The spectra include the forbidden doublets [O I] 6300,6363 \AA, [S II] 6716,6731 \AA, and [N II] 6548, 6583 \AA that we utilized to determine electron density, electron temperature, hydrogen ionisation fraction, total hydrogen density, radial velocity and the mass outflow rate. We were able to extract the parameters as far as 3".9 in the red- and 2".1 in the blueshifted beam. The RW Aur jet appears to be the second densest outflow from a T Tauri star studied so far, but its other properties are quite similar to those found in other jets from young stars. The overall trend of the physical parameters along the first few arcseconds of the RW Aur jet is similar to that of HH 30 and DG Tau and this can reflect analogies in the mechanisms operating in that region, suggesting the same engine is accelerating the jets in the T Tauri stars with outflows. Our study of the RW Aur jet indicates for the first time that, despite the detected marked asymmetries in physical and kinematic properties between the two lobes, the mass outflow rates in the two lobes are similar. This appears to indicate that the central engine has constraining symmetries on both sides of the system, and that the observed asymmetries are probably due to different environmental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call