Abstract

The study explored stearylamine containing cationic elastic liposomes to improve topical delivery and efficacy of ketoconazole (KETO) to treat deeply seated fungal infections. Stearylamine was used for dual functionalities (electrostatic interaction and flexibility in lipid bilayer). Hansen solubility program (HSPiP) estimated Hansen solubility parameters (HSP) based on the SMILE file and structural properties followed by experimental solubility study to validate the predicted values. Various formulations were developed by varying phosphatidylcholine and surfactants (tween 80 and span 80) concentration. To impart cationic properties, stearylamine (1.0 %) was added into the organic phase. Using quality by design (QbD) method, we optimized the formulations and evaluated for vesicle size, polydispersity index, zeta potential, morphology (scanning electron microscopy), in vitro drug release (%), and ex vivo permeation profiles. Result showed that there is a good correlation (0.65) between HSPiP predicted and actual experimental solubility of KETO in water, chloroform, S80, and tween 80. Spherical OKEL1 showed an established correlation between the predicted and the actual formulation parameters (size, zeta potential, and polydispersity index) (259 nm vs 270 nm, +2.4 vs 0.21 mV, and 0.24 vs 0.27). OKEL1 was associated with the highest value of %EE (83.1 %) as compared to liposomes. Finally, OKEL1 exhibited the highest % cumulative permeation (49.9 %) as compared to DS (13 %) and liposomes (25 %). Moreover, OKEL1 resulted in 4-fold increase in permeation flux as compared to DS which may be attributed to vesicular mediated improved permeation and gel based compensated trans epidermal water loss in the skin. The drug deposition elicited OKEL1 and OKEL1-gel as suitable carriers for maximum therapeutic benefit to treat deeply seated fungal infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.