Abstract

Ionizing radiation is a popular and effective treatment option for glioblastoma (GBM). However, resistance to radiation therapy inevitably occurs during treatment. It is urgent to investigate the mechanisms of radioresistance in GBM and to find ways to improve radiosensitivity. Here, we found that heat shock protein 90 beta family member 1 (HSP90B1) was significantly upregulated in radioresistant GBM cell lines. More importantly, HSP90B1 promoted the localization of glucose transporter type 1, a key rate-limiting factor of glycolysis, on the plasma membrane, which in turn enhanced glycolytic activity and subsequently tumor growth and radioresistance of GBM cells. These findings imply that targeting HSP90B1 may effectively improve the efficacy of radiotherapy for GBM patients, a potential new approach to the treatment of glioblastoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.