Abstract

Though burgeoning research manifests that cell competition, an essential selection and quality control mechanism for maintaining tissue or organ growth and homeostasis in multicellular organisms, is closely related to tumorigenesis and development, the mechanism of cell competition associated with tumor drug resistance remains elusive. In the study, we uncovered that oxaliplatin-resistant hepatocellular carcinoma (HCC) cells exhibit a pronounced competitive advantage against their sensitive counterparts, which is related to lipid takeover of resistant cells from sensitive cells. Of note, such lipid takeover is dependent on the existence of isocitrate dehydrogenase 1 (IDH1) in resistant HCC cells. Mechanistically, IDH1 activity is regulated by heat shock protein 90 alpha (HSP90α) through binding with each other, which orchestrates the expressions of lipid metabolic enzymes and lipid accumulation in resistant HCC cells. Our results suggest that HCC cell competition-driven chemoresistance can be regulated by HSP90α/IDH1-mediated lipid metabolism, which may serve as a promising target for overcoming drug resistance in HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call