Abstract

NVP-AUY922, a novel inhibitor of Hsp90, was shown to enhance the effect of ionizing radiation (IR) on tumor cells under normoxic conditions. Since low oxygen tension is a common feature of solid tumors, we explore in the present study the impact of hypoxia on the combined treatment of lung carcinoma A549 and glioblastoma SNB19 cell lines with NVP-AUY922 and IR. Cellular analysis included the colony-forming ability, expression of CAIX, Hsp90, Hsp70, Raf-1, Akt, cell cycle progression and associated proteins, as well as DNA damage measured by histone γH2AX. The clonogenic assay revealed that in both cell lines NVP-AUY922 enhanced the radiotoxicity under hypoxic exposure to a level similar to that observed under oxic conditions. Irrespective of oxygen supply during drug treatment, NVP-AUY922 also reduced the expression of anti-apoptotic proteins Raf-1 and Akt. As judged by the levels of histone γH2AX, drug-treated hypoxic cells exhibited a lower repair rate of DNA double-strand breaks than normoxic cells. The drug-IR mediated changes in the cell cycle, i.e., S-phase depletion and G2/M arrest, developed not directly during hypoxic exposure but first upon 24 h reoxygenation. Under both oxygen tensions, Hsp90 inhibition downregulated the cell cycle-associated proteins, Cdk1, Cdk4 and pRb. The finding that NVP-AUY922 can enhance the in vitro radiosensitivity of hypoxic tumor cells may have implications for the combined modality treatment of solid tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call