Abstract

90 kDa heat shock proteins (Hsp90) act as protein chaperones and play a role in modulating endoplasmic reticulum (ER) stress. Hsp90 inhibitors are under clinical investigation as cancer treatment. Mitotane therapy of adrenocortical carcinoma (ACC) has been shown to act through lipid-induced ER-stress. To explore the potential of Hsp90 inhibitors in ACC as a single agent and in combination with mitotane, we analyzed two independent gene expression data sets of adrenal tumors in silico and treated the ACC cell line model NCI-H295 with Hsp90 inhibitors BIIB021 (B) and CCT18159 (C) alone and in combination with mitotane. ER-stress markers were monitored by immunoblotting. Drug synergism was quantified using the median effect model with cell viability as read-out. Cytosolic Hsp90 isoforms AA1 and AB1 were significantly overexpressed in ACC. Viability of H295 cells was impaired by B and C as single agents with an EC50 of 5.7 × 10−6M and 12.1 × 10−6M. B but not C dose-dependently increased XBP1 splicing and CHOP expression indicative of ER-stress activation. ER-stress marker expression was enhanced by co-incubation of B with 10 μM but not 5 μM mitotane. Maximal CHOP expression was induced by 25 μM mitotane alone with no additional effect of B. Combination indices (CI) of B and C with mitotane ranged from 0.64 to 1.38 and 0.68 to 1.30, respectively where CI values < 0.5 support clinically-relevant drug synergism. In conclusion, Hsp90 paralogs are differentially expressed in ACC and B but not C activates ER-stress in ACC cells. No meaningful drug synergism of Hsp90 inhibitors with mitotane was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.