Abstract

BackgroundIdentification of promising targeted antigens that exhibited cancer-specific expression is a crucial step in the development of novel antibody-targeted therapies. We here aimed to investigate the anti-tumor activity of a novel monoclonal antibody (mAb) 11C9 and identify the antibody tractable target in the hepatocellular cancer stem cells (HCSCs).MethodsThe identification of the targeted antigen was conducted using SDS-PAGE, western blot, mass spectrometry, and co-immunoprecipitation. Silence of HSP90 was induced by siRNA interference. Positive cells were sorted by fluorescence-activated cell sorting. Double-immunofluorescent (IF) staining and two-color flow cytometry detected the co-expression. Self-renewal, invasion, and drug resistance were assessed by sphere formation, matrigel-coated Transwell assay, and CCK-8 assay, respectively. Tumorigenicity was evaluated in mouse xenograft models. RNA-seq and bioinformatics analysis were performed to explore the mechanism of mAb 11C9 and potential targets.ResultsMAb 11C9 inhibited invasion and self-renewal abilities of HCC cell lines and reversed the cisplatin resistance. HSP90 (~ 95 kDa) was identified as a targeted antigen of mAb 11C9. Tissue microarrays and online databases revealed that HSP90 was overexpressed in HCC and associated with a poor prognosis. FACS and double-IF staining showed the co-expression of HSP90 and CSCs markers (CD90 and ESA). In vitro and in vivo demonstrated the tumorigenic potentials of HSP90. The inhibition of HSP90 by siRNA interference or 17-AAG inhibitor both decreased the number of invasion, sphere cells, and CD90+ or ESA+ cells, as well as reversed the resistance. Bioinformatics analysis and western blot verified that HSP90 activated Wnt/β-catenin signaling.ConclusionsThe study preliminarily revealed the anti-tumor activity of mAb 11C9. More importantly, we identified HSP90 as a targeted antigen of mAb 11C9, which functions as an oncogene in phenotype shaping, stemness maintenance, and therapeutic resistance by activating Wnt/β-catenin signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call