Abstract
With global climate change, the high-temperature environment has severely impacted the community structure and phenotype of marine diatoms. Phaeodactylum tricornutum, a model species of marine diatom, is sensitive to high temperature, which grow slowly under high temperature. However, the regulatory mechanism of P. tricornutum in response to high-temperature is still unclear. In this study, we found that the expression level of the HSP70A in the wild type (WT) increased 28 times when exposed to high temperature (26°C) for 1 h, indicating that HSP70A plays a role in high temperature in P. tricornutum. Furthermore, overexpression and interferenceof HSP70A have great impact on the exponential growth phase of P. tricornutum under 26°C. Moreover, the results of Co-immunoprecipitation (Co-IP) suggested that HSP70A potentially involved in the correct folding of the photosynthetic system-related proteins (D1/D2), preventing aggregation. The photosynthetic activity results demonstrated that overexpression of HSP70A improves non-photochemical quenching (NPQ) activity under high-temperature stress. These results reveal that HSP70A regulates the photosynthetic activity of P. tricornutum under high temperatures. This study not only helps us to understand the photosynthetic activity of marine diatoms to high temperature but also provides a molecular mechanism for HSP70A in P. tricornutum under high-temperature stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Plant journal : for cell and molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.