Abstract

Simple SummaryPatients’ normal cells, such as lymphocytes, fibroblasts, or macrophages, can either suppress or facilitate tumor growth. Macrophages can infiltrate tumors and secrete molecules that enhance the proliferation of cancer cells and their invasion into neighboring tissues and blood. Here, we investigated the mechanism of action of a novel small molecule that suppresses the infiltration of macrophages into tumors and demonstrates potent anticancer activity. We identified the entire pathway that links the intracellular protein Hsp70, which is inhibited by this small molecule, with the macrophage motility system. This study will lay the basis for a novel approach to cancer treatment via targeting tumor-associated macrophages.The molecular chaperone Hsp70 has been implicated in multiple stages of cancer development. In these processes, a co-chaperone Bag3 links Hsp70 with signaling pathways that control cancer development. Recently, we showed that besides affecting cancer cells, Hsp70 can also regulate the motility of macrophages and their tumor infiltration. However, the mechanisms of these effects have not been explored. Here, we demonstrated that the Hsp70-bound co-chaperone Bag3 associates with a transcription factor LITAF that can regulate the expression of inflammatory cytokines and chemokines in macrophages. Via this interaction, the Hsp70–Bag3 complex regulates expression levels of LITAF by controlling its proteasome-dependent and chaperone-mediated autophagy-dependent degradation. In turn, LITAF regulates the expression of the major chemokine CSF1, and adding this chemokine to the culture medium reversed the effects of Bag3 or LITAF silencing on the macrophage motility. Together, these findings uncover the Hsp70–Bag3–LITAF–CSF1 pathway that controls macrophage motility and tumor infiltration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call