Abstract

Despite improvements of radiotherapy and better outcomes of cancer patients resistances still limit the therapeutic success. The combined treatment of tumors by the use of irradiation as well as targeted therapies is a promising approach. By the use of a proteomic screening of lung and head and neck cancer cell lines we identified the heat shock protein HSP27 as a potential target protein for a combined treatment strategy.Overall expression of HSP27 was distinctly lower in HNSCCUM-02T cells which have a high HSP27 phosphorylation ratio, whereas A549 cells revealed the opposite. Irradiation and inhibition of HSP27 phosphorylation by MKII inhibition resulted in a significantly reduced viability in both cell lines. While irradiation impaired migration only in HNSCCUM-02T cells, MKII inhibition exerted that effect in both cell lines. In contrast, knockdown of HSP27 compromised the viability only in A549 cells. Additionally, MKII inhibition counteracts radiation-induced phosphorylation of HSP27 which causes an additive toxicity and reduced migratory capacity in HNSCCUM-02T when combined.Inhibition of HSP27 expression and phosphorylation in combination with radiotherapy may be an effective treatment option to overcome resistances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.