Abstract

Protein phase separation drives the assembly of membraneless organelles, but little is known about how these membraneless organelles are maintained in a metastable liquid- or gel-like phase rather than proceeding to solid aggregation. Here, we find that human small heat-shock protein 27 (Hsp27), a canonical chaperone that localizes to stress granules (SGs), prevents FUS from undergoing liquid-liquid phase separation (LLPS) via weak interactions with the FUS low complexity (LC) domain. Remarkably, stress-induced phosphorylation of Hsp27 alters its activity, leading Hsp27 to partition with FUS LC to preserve the liquid phase against amyloid fibril formation. NMR spectroscopy demonstrates that Hsp27 uses distinct structural mechanisms for both functions. Our work reveals a fine-tuned regulation of Hsp27 for chaperoning FUS into either a polydispersed state or a LLPS state and suggests an essential role for Hsp27 in stabilizing the dynamic phase of stress granules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.