Abstract

To address the larger numbers of small objects and the issues of occlusion and clustering in UAV aerial photography, which can lead to false positives and missed detections, we propose an improved small object detection algorithm for UAV aerial scenarios called YOLOv8 with tiny prediction head and Space-to-Depth Convolution (HSP-YOLOv8). Firstly, a tiny prediction head specifically for small targets is added to provide higher-resolution feature mapping, enabling better predictions. Secondly, we designed the Space-to-Depth Convolution (SPD-Conv) module to mitigate the loss of small target feature information and enhance the robustness of feature information. Lastly, soft non-maximum suppression (Soft-NMS) is used in the post-processing stage to improve accuracy by significantly reducing false positives in the detection results. In experiments on the Visdrone2019 dataset, the improved algorithm increased the detection precision mAP0.5 and mAP0.5:0.95 values by 11% and 9.8%, respectively, compared to the baseline model YOLOv8s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.