Abstract

A novel 4,6-connected network, called Hsichengia, is described. The novel network lies in the trigonal space group P3m1 (no. 156), with a = b = 3.447 A and c = 12.948 A; these lattice parameters were derived assuming Fe-S composition. It implies a binary AB2 stoichiometry in which the 6-connected A (Fe) atoms have octahedral configuration, and the 4-connected B (S) atoms have tetrahedral configuration. The Hsichengia network seems to be very closely related to the layered MoS2 structure-type, in which puckered MoS2 layers composed of octahedral Mo centers and trigonal-pyramidal S centers are held together by weak van der Waals forces normal to the a and b directions where the MoS2 layers extend. Thus the Hsichengia network can be generated from the MoS2 lattice by the formation of disulfide (S-S) bridges between particular layers, thereby creating a 3-dimensional network from a 2-dimensional layered structure, so that the S atoms are transformed from 3-connected trigonal-pyramidal coordination into fully 4-connected tetrahedral coordination. The Wells point symbol for the Hsichengia network is given by (4666)(4363)2, and it is thus seen to have the translated Schlafli symbol given as (5, 42/3). The latter is identical to that intrinsic to the well-known mineral structure of the pyrite network, FeS2, with the corresponding Wells point symbol (512)(56)2. Therefore, the Hsichengia network may be regarded as a topological isomer of the pyrite network, where topological isomerism is defined as occurring between unique networks possessing the same Schlafli symbol. Phase transformation between the two topological isomers is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.