Abstract

Background and objectivePathological whole slide image (WSI) prediction and region of interest (ROI) localization are important issues in computer-aided diagnosis and postoperative analysis in clinical applications. Existing computer-aided methods for predicting WSI are mainly based on multiple instance learning (MIL) and its variants. However, most of the methods are based on instance independence and identical distribution assumption and performed at a single scale, which not fully exploit the hierarchical multiscale heterogeneous information contained in WSI. MethodsHeterogeneous Subgraph-Guided Multiscale Graph Attention Fusion Network (HSG-MGAF Net) is proposed to build the topology of critical image patches at two scales for adaptive WSI prediction and lesion localization. The HSG-MGAF Net simulates the hierarchical heterogeneous information of WSI through graph and hypergraph at two scales, respectively. This framework not only fully exploits the low-order and potential high-order correlations of image patches at each scale, but also leverages the heterogeneous information of the two scales for adaptive WSI prediction. ResultsWe validate the superiority of the proposed method on the CAMELYON16 and the TCGA- NSCLC, and the results show that HSG-MGAF Net outperforms the state-of-the-art method on both datasets. The average ACC, AUC and F1 score of HSG-MGAF Net can reach 92.7 %/0.951/0.892 and 92.2 %/0.957/0.919, respectively. The obtained heatmaps can also localize the positive regions more accurately, which have great consistency with the pixel-level labels. ConclusionsThe results demonstrate that HSG-MGAF Net outperforms existing weakly supervised learning methods by introducing critical heterogeneous information between the two scales. This approach paves the way for further research on light weighted heterogeneous graph-based WSI prediction and ROI localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.