Abstract
ARM devices (mobile phone, IoT devices) are getting more popular in our daily life due to the low power consumption and cost. These devices carry a huge number of user's private information, which attracts attackers' attention and increase the security risk. The operating systems (e.g., Android, Linux) works out many memory data protection strategies on user's private information. However, the monolithic OS may contain security vulnerabilities that are exploited by the attacker to get root or even kernel privilege. Once the kernel privilege is obtained by the attacker, all data protection strategies will be gone and user's private information can be taken away. In this paper, we propose a hardened memory data protection framework called H-Securebox to defeat kernel-level memory data stolen attacks. H-Securebox leverages ARM hardware virtualization technique to protect the data on the memory with hypervisor privilege. We designed three types H-Securebox for programing developers to use. Although the attacker may have kernel privilege, she can not touch private data inside H-Securebox, since hypervisor privilege is higher than kernel privilege. With the implementation of H-Securebox system assisting by a tiny hypervisor on Raspberry Pi2 development board, we measure the performance overhead of our system and do the security evaluations. The results positively show that the overhead is negligible and the malicious application with root or kernel privilege can not access the private data protected by our system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.