Abstract
Most of the traditional clustering algorithms are poor for clustering more complex structures other than the convex spherical sample space. In the past few years, several spectral clustering algorithms were proposed to cluster arbitrar- ily shaped data in various real applications. However, spectral clustering relies on the dataset where each cluster is approximately well separated to a certain extent. In the case that the cluster has an obvious inflection point within a non-convex space, the spectral clustering algorithm would mistakenly recognize one cluster to be different clusters. In this paper, we propose a novel spectral clustering algorithm called HSC combined with hierarchical method, which obviates the disadvantage of the spectral clustering by not using the misleading information of the noisy neighboring data points. The simple clustering procedure is applied to eliminate the misleading information, and thus the HSC algorithm could cluster both con- vex shaped data and arbitrarily shaped data more efficiently and accurately. The experiments on both synthetic data sets and real data sets show that HSC outper- forms other popular clustering algorithms. Furthermore, we observed that HSC can also be used for the estimation of the number of clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.