Abstract
BackgroundRenal cell cancer (RCC) is characterized by abnormal lipid accumulation. However, the specific mechanism by which such lipid deposition is eliminated remains unclear. Circular RNAs (circRNAs) widely regulate various biological processes, but the effect of circRNAs on lipid metabolism in cancers, especially clear cell renal cell carcinoma (ccRCC), remains poorly understood. MethodsThe downregulated circRNA, hsa_circ_0086414, was identified from high-throughput RNA-sequencing data of human ccRCC and pair-matched normal tissues. The target relationship between circRNA_0086414 and miR-661, and the transducer of ERBB2 (TOB2) was predicted using publicly available software programs and verified by luciferase reporter assays. The clinical prognostic value of TOB2 was evaluated by bioinformatic analysis. The expression levels of circRNA_0086414, miR-661, TOB2, and perilipin 3 (PLIN3) were measured by quantitative reverse-transcription polymerase chain reaction or western blot analysis. Cell Counting Kit-8, transwell assays, and xenograft models were employed to assess the biological behaviors of the hsa_circ_0086414/TOB2 axis. Oil Red staining and triglyceride assay was conducted to assess lipid deposition. ResultsHerein, we identified a downregulated circRNA, hsa_circ_0086414. Functionally, the restored hsa_circ_0086414 inhibited ccRCC proliferation, metastasis, and lipid accumulation in vitro and in vivo. Furthermore, the downregulated TOB2 predicted adverse prognosis and promoted cancer progression and lipid deposition in ccRCC. Mechanically, the binding of hsa_circ_0086414 to miR-661, as a miRNA sponge, upregulates the expression of TOB2, wielding an anti-oncogene effect. Importantly, the restored hsa_circ_0086414/TOB2 axis significantly contributed to the elimination of lipid deposition by inhibiting the lipid metabolism regulator PLIN3 in ccRCC cells. ConclusionsOur data highlight the importance of the hsa_circ_0086414/TOB2/PLIN3 axis as a tumor suppressor and lipid eliminator in ccRCC. The positive modulation of the hsa_circ_0086414/TOB2 axis might lead to the development of novel treatment strategies for ccRCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.