Abstract

Circular RNAs (circRNAs) are a subclass of non-coding RNAs that are important for the regulation of gene expression in eukaryotic organisms. CircRNAs exert various regulatory roles in cancer progression. However, the role of hsa_circ_0064636 in osteosarcoma (OS) remains poorly understood. In the present study, the expression of hsa_circ_0064636 in OS cell lines was measured by reverse transcription-quantitative PCR (RT-qPCR). Differentially expressed mRNAs and microRNAs (miRNA or miRs) were screened using mRNA(GSE16088) and miRNA(GSE65071) expression datasets for OS. miRNAs that can potentially interact with hsa_circ_0064636 were predicted using RNAhybrid, TargetScan and miRanda. Subsequently, RNAhybrid, TargetScan, miRanda, miRWalk, miRMap and miRNAMap were used for target gene prediction based on the overlapping miRNAs to construct a circ/miRNA/mRNA interaction network. Target genes were subjected to survival analysis using PROGgeneV2, resulting in a circRNA/miRNA/mRNA interaction sub-network with prognostic significance. miRNA and circRNA in the subnetwork may also have survival significance, but relevant data are lacking and needs to be further proved. RT-qPCR demonstrated that hsa_circ_0064636 expression was significantly increased in OS cell lines. miR-326 and miR-503-5p were identified to be target miRNAs of hsa_circ_0064636. Among the target genes obtained from the miR-326 and miR-503-5p screens, ubiquitination factor E4A (UBE4A) and voltage dependent anion channel 1 (VDAC1) were respectively identified to significantly affect prognosis; only miR-326 targets UBE4A and only miR-503 targets VDAC1. To conclude, these aforementioned findings suggest that hsa_circ_0064636 may be involved in the development of OS by sponging miR-503-5p and miR-326to inhibit their effects, thereby regulating the expression of VDAC1 and UBE4A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.